Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2027
-
Artificial spin ice, arrays of strongly interacting nanomagnets, are complex magnetic systems with many emergent properties, rich microstate spaces, intrinsic physical memory, high-frequency dynamics in the GHz range, and compatibility with a broad range of measurement approaches. This Tutorial article aims to provide the foundational knowledge needed to understand, design, develop, and improve the dynamic properties of artificial spin ice. Special emphasis is placed on introducing the theory of micromagnetics, which describes the complex dynamics within these systems, along with their design, fabrication methods, and standard measurement and control techniques. The article begins with a review of the historical background, introducing the underlying physical phenomena and interactions that govern artificial spin ice. We then explore the standard experimental techniques used to prepare the microstate space of the nanomagnetic array and to characterize magnetization dynamics, both in artificial spin ice and more broadly in ferromagnetic materials. Finally, we introduce the basics of neuromorphic computing applied to the case of artificial spin ice systems with a goal to help researchers new to the field grasp these exciting new developments.more » « lessFree, publicly-accessible full text available August 14, 2026
-
Abstract In Part I of this topical review, we discussed dynamical phenomena in nanomagnets, focusing primarily on magnetization reversal with an eye to digital applications. In this part, we address mostly wave-like phenomena in nanomagnets, with emphasis on spin waves in myriad nanomagnetic systems and methods of controlling magnetization dynamics in nanomagnet arrays which may have analog applications. We conclude with a discussion of some interesting spintronic phenomena that undergird the rich physics exhibited by nanomagnet assemblies.more » « less
-
Abstract When magnets are fashioned into nanoscale elements, they exhibit a wide variety of phenomena replete with rich physics and the lure of tantalizing applications. In this topical review, we discuss some of these phenomena, especially those that have come to light recently, and highlight their potential applications. We emphasize what drives a phenomenon, what undergirds the dynamics of the system that exhibits the phenomenon, how the dynamics can be manipulated, and what specific features can be harnessed for technological advances. For the sake of balance, we point out both advantages and shortcomings of nanomagnet based devices and systems predicated on the phenomena we discuss. Where possible, we chart out paths for future investigations that can shed new light on an intriguing phenomenon and/or facilitate both traditional and non-traditional applications.more » « less
An official website of the United States government
